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ABSTRACT 
We develop in detail the phenomenological implications of our 

previous analysis of Drell-Yan processes and of vector boson pgoduction. 
Production cross-sections and y,qT distributions of W and Z in the 
energy range up to /S = (10-20) TeV are discussed. The problem of W and 
2’ production at super colliders is complicated by the very small values 
Of Js = Q//S involved where Q = The novel theoretical features of 
Drell-Yan processes at very smal therefore analysed. The 
dependence of cross-sections and distributions on the mass Q of the 
vector boson is also discussed at different energies & and the pattern 
Of deviations from naive dimensional scaling is investigated. 
Particular attention is devoted to the tail of events at large q 
a W/Z0 

where 
is produced in assocgation with hadronic jets. 

of W/Z0 production at q > q 
The grogability 

is studied as a function of 
theTaverzge value of q 

q 
T 

and /S. 
The behaviour of which is also de ermined by 
the large qT tail, is evaluated at variousT;alues of T and JS. 
predictions for W and Z” 

Detailed 
production at & = 630 CeV, the energy of the 

present run at the CERN collider are presented. Finally, ordinary 
Drell-Yan lepton pair production at the collider is also considered. 
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SECTION 1 

INTRODUCTION 

In a recent paper (1) we have re-examined the production of W and Z 

bosons at proton-antiproton colliders. We derived completely explicit 

expressions for the transverse momentum (6,) and the rapidity (y) 

distributions. These expressions, which are in a suitable form to be 

used as the input for numerical calculations, include the large amount 

of theoretical understanding of this process which has been accumulated 

over the last few years. A complete set of results was presented both 

for total and differential cross-sections including QCD radiative 

corrections. The analytic results for the transverse momentum (and 

rapidity) distributions have the following properties, 

(a) at large qT the correct behaviour resulting from the recoil against 

one partonc213) is automatically reproduced. 

(b) in the region qT << Q (Q = MW Z) the soft gluon exponentlation is 

performed at the leading (495) and next to leading double logarithmic 

accuracy (‘-‘). 

(c) after integration over qT the known perturbative results for the 

total cross-sections (and da/dy) (10,ll) are obtained including terms 

of order (us), (which give rise to the “K factors”). 

(d) all cross-sections are expressed in terms of quark distributions, 

which are precisely specified beyond the leading order. We choose 

the deep inelastic structure function F2 as our reference 

distribution and evolve it to the appropriate scale Q. 
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In the present paper we explore the phenomenological implications 

of our previous treatment of vector boson production in more detail. We 

make numerical predictions which are (or will be) of considerable 

practical importance. We first discuss the production of W’s and Z’s at 

future super colliders with energies in the range JS = (10-40) TeV. The 

extension of our formalism to this problem is complicated by the very 

small values of the scaling variable, Jr = MW/JS, This leads to two 

possible sources of problems. Firstly, the quark and gluon 

distributions are required at ValUeS Of X- v%, much lower than those 

measured in deep inelastic scattering (or by W production at the CERN 

SppS collider). Secondly, in the treatment of the parton cross-section, 

we found that there are terms of order (aslnm(+))n. These terms, 

although not present order by order in the perturbatlve results, can be 

introduced by the resummation and exponentiation procedure if due care 

is not taken. The logarithms of T become unacceptably large when JS 

increases at fixed Q. We discuss both of these problems with special 

emphasis on the second one which is more specific to Drell-Yan type 

processes. Small values of T are also encountered in ordinary 

lepton-pair production at the CERN collider where the mass of the 

lepton-pair is in the range Q = (lo-201 GeV. We therefore consider also 

this case in some detail. 

We then study the production cross-sections and qT distributions of 

possible new heavy vector bosons, by varying the mass of the produced 

boson. but retaining the couplings of the ordinary charged W. This 

analysis is interesting, not only for the information it gives on the 

production of hypothetical heavy bosons, but also as a study of the 
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scaling properties of the various distributions. In the scaling limit 

dimensionless quantities should depend only on scaling variables and not 

on /S. For example, in the scaling limit one has, 

S o(Q./S) = f(T) (1) 

do(y-0) , da(y-0) = ZCr x ) 
qT dqTdy dy ’ T (2) 

with x = T 2qT/&. We study the shape of f(T) and Z(T,X~) and the pattern 

of deviations from the scaling limit in the range & = (0.5-20.) TeV for 

reasonable values of T and xT. The scaling approximation Is better for 

f(T) than for Z(T,X~). The deviation from scaling is especially 

noticeable in Z, because the scale-breaking dependence on &A and qT/A 

(where A=hQCD ) is magnified by the exponentiation of the soft gluon 

emission. 

We also calculated the number of events containing a W or a Z” 

produced at large qT. It is important to know the probability n(qt) for 

W/Z0 production with qT > q; as a function of qy (and also as a function 

Of JS). The interest in this quantity stems from the fact that signals 

of new physics beyond the standard model are expected to show up at 

large qT. Precise knowledge of n(q;) provides an estimate of the 

background at large qT due to the physics of the standard model. This 

subject is especially topical since Z” events at large qT can appear as 

monojets(l 2, (i.e. one jet plus missing ET) if the decay Z” + ;v occurs. 

Similarly a W event at large qT would be observed as an electron plus a 

jet(13) in an event with missing energy. Precisely these types of 

events have been reported by the UAl and UA2 collaborations 
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respectively. our conclusion, in qualitative agreement with other 

calculations,(14) is that the predicted rate of W or 2’ production at 

the values of qT required by the CERN events is too small to account for 

all the interesting events. Of course the comparison of an event rate 

probability with such a small number of events is rather premature. The 

conclusion will become definite if the same pattern of events remains 

even after greater statistics have been collected. 

We first consider n(qT) at & = (540-630) GeV. Our determination 

of r(q,) at large qT and JS - 0.5 TeV proceeds in three steps. We first 

determine at what value of qT the full transverse momentum distribution 

approaches the perturbative limit given by recoil against one parton. 

For qT 5 30 GeV the perturbative formula can be substituted for the more 

complicated expression which is valid at all values of qT. This division 

of the range in qT is approximately constant even as far up as 

JS = 20 TeV because the onset of the perturbatlve region occurs when qT 

is compatible with Q rather than with JS. We then evaluate v(qT) above 

this point in qT from its perturbative expansion at order as. Particular 

attention is given to the estimation of the theoretical error on n(s,) 

at CERN collider energies. Because n(qT) is proportional to as the main 

source of error is lack of precision in the value Of cLs coming from 

uncertainties in the value of A and the choice of scale (e.g. the choice 

between Q* and q$. We therefore take advantage of the existing 

calculation(15) of the qi annihilation component of the qT distribution 

at order o2 s. At order a, the quark-gluon component is found to give a 

smaller contribution than the quark-antiquark annihilation term at 

& - 0.5 TeV. It is therefore plausible that the quark-antiquark 
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annihilation term dominates over quark-gluon term also at order oz. We 

have therefore repeated the calculation of n(q,) including the O(oE) q-6 

contribution to the qT distribution. Including these partial results 

from O(ag) we find that the value of n(q,) is only slightly decreased, 

but that the theoretical error due to scale ambiguities is substantially 

reduced. We have also calculated n(qT) at large values of s up to 

JS = 10 TeV. The perturbative calculations are still valid for 

qT t 30 GeV in agreement with the expectation that the relevant 

parameter is the ratio of qT and Q. The gluon distribution becomes more 

and more important with increasing JS, so at higher energies the O(az) 

results for qq alone cannot be reliably used. 

The perturbative tail is also sufficient for a calculation of the 

average ValUeS of qT and q; at high energy in a Drell-Yan type process. 

m 

> = astQ2) h%,aS(Q2) + . . . 

where the dots indicate terms down by powers of /S. We computed h (1) and 

h(2) as a function of T at energies in the range /S = (0.5-100) TeV. We 

also computed <qT> and /<qT>' for the case of W production. In this 

case the increase in JS is to a large extent compensated by the 

corresponding decrease in T SO that <qT> only varies in the range (7-22) 

CeV for /S = (0.5-20) TeV. 

Finally we give extensive results on qT and y distributions for 

w/z0 production at v's = 630 GeV. the energy of present CERN collider 

run, and for Drell-Yan lepton-pair production with Q - (10-20) GeV. 
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Numerical calculations are performed as described in detail in 

ref. 1. We ignore the smearing both from the intrinsic qT of partons 

inside the nucleon and from possible initial state interactions between 

active and spectator quarks. (16) It is now known that the leading terms 

in the total production cross-sections are unchanged by initial state 

interactions.('7) However, a smearing effect could still possibly be 

present in the qT distribution. The justification for neglecting these 

effects is that the average smearing momentum is less than <qT> in the 

energy range of interest here. As a consequence, the slight flattening 

of the qT distribution from the smearing falls within the present 

uncertainty from other sources. This has been checked numerically for 

smearing momenta below 1 GeV. 

The values chosen for the boson masses are 

Mw = 83.0 GeV , MZ = 93.8 GeV , sin2eW = 0.217 

The sensitivity of the numerical results to the choice of quark and 

gluon distributions in the proton (antiproton) was tested using 

different sets of parameterizations. We have used several sets of 

parton distributions. In various places in the paper we have used the 

sets given by Duke and Owens (DO)(18), the set proposed by Cluck, 

Hoffmann and Reya(") (GHR).and the sets given by 

(20) Eichten,Hinchliffe,Lane and Quigg (EHLA) . All three sets of 

distributions claim to be compatible with existing data from fixed 

target energies although they differ somewhat in the importance given to 

different experiments. For a comparison of the different distributions 

we refer the reader to ref.(20). The first set (DO11 has a smaller A 



(A = 0.2 GeV) and a narrower gluon distribution at the evOlutiOn 

starting point Qz = 4 ciev2. The second set (D02) has A = 0.4 GeV and a 

broader gluon distribution. The third set (GHR) has A = 0.4 GeV. The 

distributions of Eichten et al.,which have the advantage that they are 

valid down to very small values of x, come both in a narrow glue 

version, EHLQl (A = 0.2 GeV) and a broad glue version EHLQ2 

(A = 0.27 GeV). The full set of distributions is only used when the 

theoretical error is estimated. Otherwise we used as a reference one or 

other of the above parameterizations. In all ca3es the evolution is 

performed using only the lowest order evolution equation. Note that the 

value of A used for the Q2 evolution of distributions is fixed by the 

authors of the different pa.PameteriZatiOnS. Thus, in a sense, they are 

only guaranteed to reproduce the existing data if used with the 

appropriate value of A. There are two numerical calculations in the 

present paper which require the running coupling to be specified to two 

loop accuracy. The first case is in the exponent of the soft g1uon 

resummation which is treated to next to leading accuracy (for example, 

by including the Kodaira-Trentadue correct ionC6) ) . The second ca3e 

occurs when the perturbative qT distribution is improved by including 

the O(az) q-q contributions. In these two cases we have used the ?%? 

prescription and the two loop form of 03, with AMS = 200 CeV. However, 

we kept the evolution of partOn distributions fixed as specified in 

(DOl) with the same value of A as for (x3. 

The paper is organized as follows. In section 2 the basic formulae 

and results are recalled. In section 3 the production of vector bosons 

at super colliders is considered. 1n particular, an analysis of the 
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problems related to the small values of r/~ is presented. Section 4 is 

devoted to total cross-sections and rapidity distributions. In section 

5 the tail at large transverse momenta is studied, and the average 

transverse momentum <qT> and n(q$. the probability of U/Z0 production 

at qT$, are evaluated. In section 6 detailed results for W/Z0 

production at & = 630 GeV are presented. Finally, section 7 COntainS a 

brief discussion of lepton-pair production at the CERN collider with 

Q << MH,z* 

SECTION 2 

BASIC FORMULAE AND RESULTS 

In this section we give a summary of the main formulae and explain 

the derivation of the phenomenological results described in the 

following sections. 

The total cross-section for vector boson production 0 and the 

rapidity differential cross-section do/dy are predicted by the QCD 

improved parton model(2’) as an expansion in the strong coupling 

constant %- The corrections of order as to these cross-sections have 

been calculated and found to be important. (lO,ll) They increase the 

naive parton model prediction by an energy and rapidity dependent factor 

commonly referred to as the “K-factor7’. At fixed target energies the 

O(as) corrections are dangerously big and resummation techniques must be 

invoked(22) in an attempt to control the perturbation series. At 

collider energies and above their size is reduced because the coupling 
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constant is smaller. For the production of weak intermediate bosons at 

JS = 0.5 TeV, they lead to a correction of about 30%. The total 

cross-section for W/Z production at collider energies is therefore more 

reliably predicted than the lepton pair production cross-section at 

fixed target energies. 

The prediction of the entire boson transverse momentum distribution 

is more subtle, since all order effects always need to be taken into 

account. Renormalization group improved perturbation theory is valid 

when the transverse momentum qT is of the same order as the vector boson 

mass Q. The large qT tail of the transverse momentum distribution was 

one of the early predictions of the QCD improved parton model. (293) As 

qT becomes less than Q, such that A << qT << Q, a new scale is present 

in the problem and large logarithms of the form In (Q2/qc) occur, 

forcing the consideration of all orders in czs (because as(Q2)ln 

Q2/q2 T - 1). These terms are characteristic of a theory with massless 

vector gluons. Fortunately, these terms can be reliably resummed both 

in the leading double logarithmic approximation and beyond. This 

resummation was first attempted by Dokshitzer-Dyakonov-Troyan (DDT)(‘) 

and subsequently modified and consolidated. (5) A consistent framework 

for going beyond the leading double logarithmic approximation has been 

indicated by Collins and Soper (8,9) (recently discussed and improved in 

ref. 23). The first subleading terms were given in ref. 6,7. 

The combination of these results on the qT distribution with the 

constraint on the area of the distribution provided by integrated 

cross-section at O(as), allows an essentially complete reconstruction of 

the qT distribution to that accuracy. There is some uncertainty due to 
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the parton intrinsic transverse momentum but at collider energies it is 

present only in a restricted region at low qT. 

Schematically, for the qi annihilation term, the perturbative qT 

distribution at order os is of the form, 

do oo(l+A) 6(q;) + B 
C -c +- 

dq; (s2,)+ 
+ Ykl$ (5) 

where a0 is the lowest order cross-section and A, B and C are of order 

a 9 or higher, and independent of qT in the limit of fixed coupling as. 

Y(q,), which is also of order as, is a regular function of qT at qT = 0. 

The definition of the “plus” distribution is with respect to the 

kinematic upper limit of the qt integration, 

A2 2 
AT 

IoTg(x) f+(x) dx = I, Cg(x)-g(0)] f(x)dx (6) 

where AT = (qTIMAX. 

In particular the total cross-section is given by, 

A2 
o = oo(l+A) + IoTY(x)dx (7) 

Note that the integral of the B and C terms over the whole range of q; 

vanishes because of Eq. (6). These terms become large for qT << Q and 

have to be resummed to all orders. The qT distribution in the 

exponentiated form is written as, 

do d2b -iqT.b 
-= 
dq; 

Y(qG) + 1% e oo(l+A) exp S(b) (8) 
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where 

S(b) * .l ) (Bl,42 
k2 

+ Cl 

The Bessel function Jo originates from the angular integration in d2k 

and the subtraction resulting in the (Jo-l) factor is from the “plus” 

prescriptfon defined in Eq. (6). The b transform is introduced in order 

to ensure the conservation of transverse momentum in multiple gluon 

emission. (21 ) Note that the integral over all values of q;, which leads 

to the total cross-section, is given by, 

2 

0 = / d2b a2(g) oo(l+A) exp S(b) 
AT 

+ I, dx Y(x) 

dx Y(x) (10) 

in agreement with Eq. (7). The last step follows because S(O) = 0. We 

see that resummation alters the shape but not the normalisation of the 

cross-section since the whole tower of exponentiated terms gives no net 

contribution to the total cross-section. 

Actually B (and C) in Eqs.(5,9) are known to a better accuracy than 

order CL 2 
5‘ The term of order a, in B was first derived in ref. 6. 

Recently it has been confirmed (7) using the results of ref. 15 for the 

perturbative qT distribution from qq annihilation at order o:. In the E 

prescription for os one obtains, 

,, a,(k2) 
B=+-’ 

3 II [l + Das(k2) + . . . . I (11) 
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aS( k2) 
c--2 * [l + EcrS(k2) + . . . . 1 

whereC617) 

2 
D = & [F - $- - -$ n,] 

(12) 

(13) 

The value of E is also known (71, but is less important because the whole 

C term is suppressed by a large logarithm with respect to the B term. 

After the integration over k2 in Eq. (9) is performed, the term D 

multiplies a factor of order az(Q2)ln2Q2, which approaches a constant 

for Q2+m. Thus the effect of D, although suppressed by a logarithm with 

respect to the leading term, persists at all Q2. 

When the dependence on the rapidity y is also taken into account 

the final result is given by, 

do -iqT.b 
-* 
d+y 

N {J+e R(b2.Q2.y) * exp S(b2,Q2,y) + 

+ Y(q;,Q2vY) 1 (14) 

where S(b2,q2,y) is given by Eqs. (9),(11-131, with 

2 
*T = A;(Y) = (S+Q2j2 _ Q2 

4 S oosh2y 
(15) 

We display here the explicit form of R which will be needed later. This 

term is the generalisation to the y dependent case of the factor oo(l+A) 

in Eq. (8). 
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0 0 2 R(b2,Q2,y) - H(Xl,X2,P ) [l + 2; (-3 In 

fqW H(x;/z, x;, + i’ 

x; 

% fq(z) H(x;,x;/z)l 

fg(z) K2(x;/z, x;, + Ilo e fg(s) K,(x;,x;/z)] (16) 
x2 

In this expression H - q(x,) :(x2) , K1 - [q,(x) + q(y)1 g(x,) and 

K2 
- [q(x,) + 6(x,)] g(x,) contain the appropriate bilinear combinations 

of parton distributions, f 
q 

and f 
B 

are known kernels (Eqs. (59) of 

ref. 1) and P2 is a precisely defined scale of order q; (Eq. 58 of 

ref. 1). As usual xlo2- /T e*'. The regular term Y(b2,Q2.y) in Eq. (14) 

is divided into the parts due to the annihilation and Compton scattering 

graphs which can be found in Eqs. (62,63,64) of ref.(l). 

The y distribution is obtained by integration over qc of Eq. (14) 

and reproduces the known perturbative results correct up to and 

including order es. The y distribution is given by Eqs. (80-86) of 

ref. (1). Alternative, but identical, expressions for do/dy can be 

found in ref. (10) and (24). Here we only report the very simple 

perturbative formula for the total CrosS-Section. 

o=NI 

=s 1 + z 2 0(x1x2-T) . (K,(xl,x2,) + K2(x,,x2)) f;($$] + Oh:) 

(17) 
The kernels fT q g are given in Eq. (88) of ref. 1. 
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SECTION 3 

W AND 2 PRODUCTION AT SUPER COLLIDERS. 

In this section we consider W/Z0 production at centre of mass 

energies in the range & = (10-20) TeV. The results of this analysis are 

clearly relevant for the experiments to be set up in the next decade. 

However, as already mentioned, this problem is also interesting in its 

own right because it provides an example of the QCD improved parton 

node1 as applied to Drell-Yan type processes at very small values of T. 

In this context it is important to note that the present collider offers 

an ideal configuration for the application of QCD to vector boson 

product ion. The relevant values of Jr for & = (540-630) GeV are in the 

range, 

Jr = 0.13 - 0.17 (18) 

The quark and gluon distribution functions are well known fOP the Values 

of T in Eq. (18). By way of contrast if we extrapolate to & = 20 Tell 

we find that Jr I 5*10m3. At these values of Q and Jr the Drell-Yan 

total cross-sections 0 and da/dy are dominated by sea-quark 

distributions. Although the gluon distribution is much larger than the 

quark distribution at small x, the gluon contribution to o and da/dy 

remains relatively small even at super collider energies. The 

contribution to CI or da/dy from gluon distributions enters through the 

Compton graph, and is suppressed by a factor of order 3/8 as(Q2 )/n with 

respect to the lowest order annihilation term. On the other hand the 

gluon distribution is important for do/dqTdy at large qT where the 
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cross-section itself is very small. 

At such small values of x, neither the sea quark nor the gluon 

distributions can be obtained directly from existing experiments. They 

are normally estimated at low x and large Q2 from the quark and gluOn 

distribution functions at larger x and smaller Q2 using the QCD 

evolution equations. When ln( 1 /x) is large the one loop evolution 

equations are dominated by the poles at x = 0 which appear in the 

splitting functions(25),(CF-4/3,CA-3,nf=no. of flavours). 

P(l) gg (x) ‘S “A P(l) % 2cF 
x:0 2x x - - : gq (x) -- x:0 2x x (19) 

The small x behaviour of the gluon distribution is driven by P ,,(x). In 

the basis (i) the evolution of the moments is controlled by the 

anomalous dimension q atrix,which near n = 1 has the form, 

0 4 
Tf 

An 

% 

= 2;; 1 1 2cF 2CA -- 
(n-1) (n-1 1 

(20) 

This implies that the growth of the singlet quark distribution Z in the 

small x region is less r;ipid than the growth of the gluons. Denoting by 

T(x) the momentum distribution of the gluons, 

r = xg (21) 

we obtain that, 



Q2 dr(x,Q2) = as(Q2)C 
A 

dQ2 
7l 

I; 2 rhQ2) 

Setting, 

5 _ b IQ2 dk2 a (k2) = 
k2 ' 

17 

(22) 

(23) 

2cA 
Y= nb In i (24) 

where [bas(Q2)]-' - lnQ2/A2, Eq. (22) can be cast in the form (26,271 

d 
2 

(25) 

The solution to this equation for large Sy is given by 

r(y,c) = exn/ZT (26) 

which expressed in terms of the gluon distribution is (26,27) 

=;..,I- g(x) (2-f) 

The small x behaviour of the timelike splitting functions is also given 

by Eq. (19). The above solution to the one loop evolution equation in 

the small x region would appear to be valid both for parton 

distributions in the spacelike region and fragmentation functions in the 

timelike region. If it were valid at x = 0 for fragmentation functions 

if would imply a behaviour for the multiplicity which is known not to be 

the correct QCD prediction. In the timelike region it is known that the 
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behaviour of the anomalous dimension near n = 1 is modified by higher 

order terms which were not included in the above analysis, (28) 

acA2 1 
d?;-1 

(n-lj3 
+. . . . . 

- t [-(n-l) + J~8ocA (28) 

In x space this is equivalent to the occurence of terms of order 

as/x[asIn2(l/x)]m-1 in mth order perturbation theory. These terms 

modify the behaviour of the v:(a) near n = 1 into a non-singular one. 

The true large Q2 prediction for the multiplicity is given by 

a(Q i(Q2) - no exp fa 
2 -CC 

) da .w = no exp 
2cA Q2 

J 

nb In - 
A2 

(29) 

The subleading corrections to this expression have also been calculated 

in ref. 29. 

The question which we wish to address here is whether or not the 

higher order terms in the spacelike anomalous dimensions modify the 

behaviour given by Eq. (27). The full answer to this question is not 

known but the properties of higher order corrections to the spacelike 

anomalous dimensions which are known, imply that Eq. (27) is the correct 

asymptotic behaviour in the range of x of current interest. The form of 

the two loop anomalous dimension matrix in the small x region is (30) 



‘:::,., 

40 ‘ATRnf 
T x 

--_ 4+,/A) TRnf X+j 

(30) 

In contrast to the timelike case we see that the terms of order 

as/xl. ln( l/x) Irn for m = 1 and 2 are absent. Indeed it is known (311 to 

all orders that the most singular terms in the series for the anomalous 

dimension are of the form, 

Y"(a) = n ji1 aj (-&I' (31) 

where 
a, = 1, a2 = 0 a3 = 0 a4 = 25(3), . . . . (32) 

and c(3) is Fiiemann zeta function. The second and third order terms are 

less singular than might be expected from the general series Eq.(31). 

We therefore conclude that the asymptotic behaviour predicted by the one 

loop evolution equations CEq. (2711 should be valid down to much smaller 

X in the spacelike region than in the timelike region. For 

fragmentation functions it breaks down when CAas/n ln2(1/x) = 1, whereas 

for the gluon distribution function it only breaks down when CAas/x In 

(l/X) - 1. The ordinary evolution equations are therefore suitable for a 

description of the singlet distributions at least down to x I lop3 for 

Q < 1 TeV. The behaviour at still smaller values of x has been studied 

in ref.(26). 
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The only remaining problem with regard to the parton distribution 

functions at low x is to convince ourselves that the parameterisations 

which we use provide an accurate description of the behaviour predicted 

by the QCD evolution equation in the region of x at which we use them. 

For the distributions of Duke and Owens the discrepancies between the 

fitted values and the results of the evolution program are stated (18) to 

be nowhere more than a few percent for x > 5~10~~ and Q < 1 TeV. On the 

other hand the GHR parameterisation (19) is valid for x I 10S2 and 

Q S 2~10~ CeV. The EHLQ distributions are valid for x > 10 -4 and 

Q < 10 TeV. In Fig. 1 the DOl, CHR and EHLQl sets of distributions at 

Q - 83 GeV are shown for x 2 10v3. We see that they are quite similar 

for x L 5*10w3, i.e. in the region of interest for most of this paper. 

In Fig. 2 we report, as a further check, the bilinear combinations of 

distributions H - q< and K - (q+q).g which are directly relevant for W 

production, computed from DOl, GHR and EHlRl as functions of JT. 

Even if the parton distributions at small x are given one is still 

faced with the problem of treating the relevant parton subprocesses 

correctly in the region of small r. The massive vector boson in 

Drell-Yan processes enters in a totally inclusive final state. The well 

known theorem(32) on mass singularities ensures that all such 

singularities which might be present in the Drell-Yan total 

cross-section can be included in the initial state, i.e. factorised into 

the parton distributions. We expect that all singularities for ‘I + 0 

are removed once the parton distributions are taken from Deep inelastic 

scattering and evaluated at the scale Q2. This is what happens in 

explicit calculations at order as as we shall now illustrate. 
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To simplify the discussion we assume that the parton distributions 

effectively behave like l/x at small values of x. The lowest order 

terms of o and do/dy then behave at small T as follows 

OO 
- Jt+H(x, $) -iln+ 

do 
0 - H(x;, 
0 

(33) 

(34) 

Note that the total rapidity range increases like ln(l/r) at small T in 

agreement with Eqs. (33),(34). The double differential cross-section in 

qt and y reduces to a Pfunction term in lowest order, 

doO - I 

dq;dy 
H(x;,X;) 6(q$ - + b(q;) (35) 

It is simple to check that the correction terms of order as to o and 

do/dy behave at small T in the same way as the lowest order terms. This 

is immediately seen from Eq. (17) for the total cross-section corrected 

at order a s. The correction to the q: term behaves at small T as, 

do 
P 

dz f;(z) (36) 

Since f:(z) is integrable at z-0, the lower limit of integration can be 

replaced by zero. The correction from the QCD Compton term also behaves 

in exactly the same way and the stated result follows. 
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The corresponding result for do/dy and do/dq;dy is also true, 

although it may superficially seem that terms proportional to asln2(l/~) 

and asln(l/~) are present in Eqs. (14-l 6) of this paper and in 

Eqs. (80-86) of ref. 1. A careful examination shows in fact that the 

dangerous terms CanCel exactly. 

In order to extrapolate the resummed expression for do/dq:dy to 

small T the exponentlation must be performed in such a way that no 

spurious [asInm(l/~)ln terms, with m = 1,2 appear at order n L 2. For 

this purpose, as already mentioned in ref. 1, the exponential in 

Eqs. (q-14) must be transformed according to, 

A; 2 

expS=explo -Cl +I ;:) “, exp I 

where A T is given by Eq. (151. For normal values of ? this replacement 

is numerically insignificant because .the large transverse momenta 

between Q and AT are always in the perturbative region. But for very 

small T the integral from Q2 to A$ produces large logarithms and the 

difference between the two sides of Eq.(37) becomes important. The 

proposed ruplzcement eliminates these large logarithms by cancelling 

them against the large logarithms appearing in the factor R in Eq. (14), 

which is given in Eq. (16). Including also the factor R one obtains, 
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A2 
rIexp.54.R(1 +i T, exp IQ,’ - 

Q2 

2as(P2) A2 A2 
{H(+;,P2) [l + 3T 

(-3 In 2 - In2 31 + r ] 
Q2 Q2 

2 2 
[l +1_, AT "'c (k2) (Jo(bk)-1) (-3 + 2 In $)] (38) 

3n Q2 k2 s 

Here r contains all terms in R without large logarithms and P2 is a 

scale of order q;. It is immediately seen that the large logarithms of 

order cs cancel. By dropping terms of order c's we finally Write, 

R exp S - [H(xT.x2, ' P') + r] 

2 
AT dk2 Q2 Q2 

Q2 
c (k2) Jo(bk) (-3 + 2 In -11 exp lo 7s k2 

(39) 

Note that for b - l/qT the Bessel function suppresses the integral by 

oscillating for qT b Q. Also observe that the total cross-section at 

order 
aS 

is not altered by the modification given in Eq. (37). us i.ng 

Eq. (37) the qT distribution of Drell-Yan processes can be safely 

extrapolated down to small values of T provided that the parton 

distributions are known at the relevant Values of x = (Jr). 

In conclusion, the perturbative expansion remains valid for o and 

do/dy even at very small values of T. The only limitation in predicting 

0 and do/dy at small JT arises from our ignorance of parton 
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distributions at small x. The extrapolations of sea and gluOn 

distributions to small x and large Q2, obtained from the data at larger 

x and smaller Q' by using the QCD evolution equations, can be trusted 

until CAas/r ln(l/x) s 1. The crucial feature is the absence in the 

spacelike case of terms in the perturbation series of order CAos/n 

ln2(1/x). This permits sensible predictions to be made down to x - 10 -3 

for Q - (0.1-l) TeV. The same conclusion also applies to the transverse 

momentum distribution do/dq:dy if and only if the resummation of soft 

gluon emission is implemented without introducing spurious large 

logarithms in the small T region. The resulting expression given in 

gq. (39) satisfies this additional important requirement together with 

the properties listed in the introduction. 

In Fig. 3 we plot the resulting normalised qT distributions for W/Z 

production in the range of energies between the present collider (see 

also Fig. 13) and JS = (10-20) TeV. The distribution becomes flatter as 

the energy increases, but much less than would be expected from a simple 

resealing of the average qT. We shall in fact see in section 5, where 

QT> is computed and discussed in detail, that when J.5 is increased at 

fixed Q the rise of <qT> is slowed down by the effect of the decrease in 

T. 

We conclude this section by briefly discussing the scaling 

properties of the qT distribution. In the naive parton model the 

dimensionless qUantity, 
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do(y-0) 
qT dqTdy 

r- (40) 

*Y-o) 
dy 

is only a function of T and x,,( Z - Z(T,X~) with xT = 2qT/&). This is 

no longer true in the QCD improved parton model. The results for Z 

which are obtained from the complete QCD calculation in the range of 

energies JS = (0.63-10) TeV with JT = 0.13 are shown in Fig. 4. As is 

seen the scaling violations are quite substantial, but the scaling 

approximation can still be very useful for a qualitative understanding 

of the dependence of the qT distribution on Q and &. 

SECTION 4 

TOTAL CROSS-SECTION AND RAPIDITY DISTRIBUTIONS 

In this section we shall present results on total cross-sections 

and rapidity distributions for the production of W and Z vector bosons. 

We also consider the possibility of heavier W bosons. Our results are 

presented for energies in the range /S = (0.63-4O.TeV). The total 

cross-section is computed from Eq. (17) which includes the O(as) 

correct ions and the rapidity distribution do/dy is obtained from a 

similar O(as) expression given by Eqs. (80-86) of ref. 1. 

In Table 1 we give the values of (1 w++w- and oz” , together with an 

estimate of the associated theoretical error, at significant Values of 

the centre of mass energies. The error is obtained by varying the sets 



26 

of parton distributions, the value of A and also the choice of a,(<qG>) 

or o(Q2) in the first order terms. In Fig. 5 we plot the total 

cross-sections for W production as a function of energy for both proton 

antiproton and proton-proton colliders. Because of the dominance of the 

sea quarks at small x the two cross-sections are practically identical 

at high energy. Also shown in Fig. 5 are the cross sections for 

product ion of possible heavier W’s, obtained by varying MW with fixed 

couplings. This is also important as a study of the scaling violations 

in the total cross-section shown in Fig. 6. In the scaling limit the 

dimensionless quantity SO is independent of S at fixed T. The scaling 

violations, almost invisible in the double logarithmic plot, are quite 

sizeable in reality. 

The evolution of the y distribution for W/Z0 production as a 

function of energy is shown in Fig. 7. We see that the W’s are more and 

more produced in the forward (or backward) direction as the energy 

increases. However, the central region is where proportionally heavier 

W’s would be produced. In fact, we also see from Fig. 7 that the y 

distribution is not much changed by going to high energy with fixed T. 

In other words, the scaling violations in these normalised y 

distributions at fixed T are small. Figs. 5, 6 and 7 were obtained 

using a fixed set of parton distribution functions and are subject to 

theoretical errors of the size indicated in Table 1. 
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SECTION 5 

LARGE TRANSVERSE MOMENTA 

In this section we study the large transverse momentum tail of the 

qT distribution. As already mentioned in the introduction this is 

especially important in the search for new physics beyond the standard 

model. In fact W and/or Z” production at large qT could cause events 

with wmonojets” or wlepton(s) plus jet(s)“,in addition to missing ET. 

These are typical triggers in the search for new phenomena. 

We shall focus our attention on the quantity n(q,) defined as the 

probability of W/Z production with transverse momentum larger then qT, 

ldq,) = J 
AT(“)do(Y=O) dp , , 

dpTdY T O 
AT(“)do(Y=o) dp 

qT dpTdy T 
(41) 

where AT(y) is given in Eq. (15). We shall also consider the behaviour 

of the average transverse momentum at zero rapidity <qT> (and J<q:>): 

A,(o) 
<qT> = I, qT dqTdy 

do(Y=O) dqT , J AT(“)do(Y=O) dq ___- 
0 dqTdY T 

as a function of energy and T. Beth <qT> and n(q,) (at large qT) are 

fixed by the perturbative tail Of the qT distribution. In the naive 

parton model <qT> is a constant in energy at fixed T. In the QCD 

improved parton model <qT> increases with JS, according to Eq. (3). At 

fixed T the increase is linear, up to logarithmic corrections, with a 

slope which is proportional to cas(Q2) in lowest order perturbation 
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theory. The slope can be computed in perturbation theory because the 

average qT value is determined by the events in the small but long tail 

at large qT which extends up to AT - /S/2 [see Eq. (1511. 

By construction, the final expression for do/dq:dy in Eq. (14) 

[with or without the modification in Eq. (39)] approaches the correct 

2 perturbative value when terms of order os are negligible. Thus, in 

principle, one could use the exact expression for the computation of 

n(qT) and <qT>. However, the perturbative expressions are simpler to 

handle numerically. For SUfficiently large qT and a fixed amount of 

computer time one obtains a far better numerical precision on %(qT) by 

working directly with the perturbative expression. Similarly the 

perturbative formulae are also more efficient for computing the 

behaviour of <qT> as a function of /S and T. The complete qT 

distribution can then be used to check at a few points that the soft 

radiative contribution can indeed be neglected. 

The value of qT at which the qT distribution is well described by 

the perturbative tail alone can be read from Figs. 8.9. The result is 

that the perturbative tail is a quite adequate description of the actual 

qT distribution for W/Z0 production provided that qT 2 30 GeV, almost 

independent of & in the range JS I 0.5-20 TeV (in agreement with the 

fact that the perturbative expression is expected to hold at qT - Q). 

In table 2 we report the values of n(q,) for qT t 25 GeV for W and 

Z” production at & = (540-630) CeV, as calculated from the perturbative 

qT distribution at order (ts, normalised by the lowest order 

cross-section (as is correct when terms of order oz are neglected). We 

prefer relative probabilities rather than absolute rates. From the 
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probabilities one can more easily obtain the fraction of W/Z expected at 

large qT from the total number of W/Z observed, (assuming that the 

experimental acceptance is independent of qT). The main source of the 

error quoted in table 2, apart from the uncertainties on the partOn 

distributions, is from the value of es. Without including terms of order 

2 as one cannot decide whether to use a,(q:) or os(Q2) or another 

comparable scale. Taken together with the ambiguities on the value of 

A, the overall uncertainty on os is responsible for most of the quoted 

error, because n(qT) is proportional to es at this order. 

To proceed further in the theoretical accuracy one should include 

all terms of order czz in the perturbative qT distribution (and normalise 

by the integrated cross-section with the O(crs) correction included). A 

complete calculation of the qT distribution at order o’, has not yet been 

done. However, the contribution at order az from the qq annihilation 

diagrams has been evaluated. (15) Presumably this is the most important 

term, because the QCD Compton contribution at order as is small at 

JS - 0.5 TeV relative to the dominant qq term of the same order. We 

have thus included the qi corrections at order os 2 in the numerator and 

the complete O(us) cross-section in the denominator. The results for 

nW(qT) at JS = 0.5’1 TeV are given in Table 3. The central value of 

n(q,) is slightly lowered because the shift in the numerator is of equal 

sign but smaller than the change in the denominator (the latter being 

due to the wK-factorU’). The main advantage of including the terms of 

order o’, is that they lead to a somewhat smaller error, because the 

scale ambiguity in as is displaced to the terms of O(az). The form of 

the O(CI~) corrections varies according to the choice made for the scale 
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of the coupling in the linear terms in such a way as to compensate for 

the variations up to terms of O(az). The quoted theoretical error in 

Table 3 does not include the neglect of all the parton diagrams of O(ag) 

except the qq contribution. 

From the values of II w’z(qT) at /S = 0.54 TeV we see, for example, 

that it is quite unlikely to find more than 3% of W and Z” production 

with an associated jet of qT L 35 GeV. In particular taking into account 

a factor -6 between r(Z+Z,~,v,) and r(Z+e+e-1, it follows that we expect 

la% as many *‘monojets” with qT 2: 35 CeV as observed Z” 
+ - +ee events. 

Finally in Table 4 we report the values of nW(qT) at & = 1.6 TeV 

and 10 Tell. at order os, for a given set of parton distributions and a 

given choice of scale for es [i.e. as = os(Q2)1. 

We now consider the average value of transverse momentum for W 

production as a function of /S and of ‘I (i.e. we assume the existence of 

new W’s with the same couplings but different masses than the ordinary 

W. The T dependence obtained in this way is essentially the same as 

that obtained for Z” production and in the production of lepton pairs. 

In Figs. (10.11,12) we plot <qT> and J<q2T> for & = (0.54-20) TeV and 

JT = 0.01 - 0.3. Fig. 12 refers to proton-proton collisions. Also 

plotted in Figs. 10,ll are the values of <qTjw and J<q2> T w for the 

ordinary W. One sees that the T dependence is very pronounced but that 

the variation of the <qT> slope with JS is quite mild. This change of 

slope with &i is definitely present but hard to discern on a log-log 

plot. At & = 20 TeV the average value of the W transverse momentum is 

about 22 GeV. 



SECTION 6 

W AND 2’ PRODUCTION AT & - 630 GeV 

The forthcoming run at the CERN collider will be at Y’S = 0.63 TeV. 

It is therefore useful to give detailed predictions for this particular 

energy. We shall give our results for W production. It is important to 

emphasize that the predicted shape of the suitably normalised transverse 

momentum distributions for W and Z production are practically the same. 

The difference between W and Z” in normalised distributions is marginal 

and in most cases falls within the limits of the theoretical 

uncertainty. 

The main results are collected in Table 5, where the quantity 

(l/a)/(do/dqTdy) is given for different values of qT and y, for our 

reference set of distributions and a 
S 

= as(Q2). Figs. 13,111 also refer 

to the same set of results. Fig. 13 shows the normalised qT 

distributions at different fixed values of y. The qT distribution 

obviously becomes softer for increasing y. The differences in the qT 

distributions for different y which are visible in Fig. 13 provide a 

measure of the limits of the often used approximation of a factorised 

form for the y and qT distributions. As a first approximation the 

factorised form is acceptable for y 6 1. On the other hand we see from 

Fig. 14 that the rapidity distribution do/dy is not sufficiently peaked 

near y=O to make the tail of events at y > 1 unimportant. 
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SECTION 7 

LEPTON PAIR PRODUCTION BELOW THE W AND Z” MASS AT THE COLLIDER. 

The experimental study of Drell-Yan lepton pairs at collider 

energies is interesting because it tests the QCD description of 

Drell-Yan processes for values of JT in the range Js - 10-2-10-‘. The 

background of lepton pairs from heavy flavour production can be 

estimated(33) and is especially important at small values of Q. 

In Fig. 15 we plot the total cross-section for 4.5 - 540 GeV as a 

function of Q. Only the virtual photon contribution is included. The 

following values of the integrated cross-section were obtained: 

o(Q > 12 GeV) = (230 f 70)pb (43) 

o(Q > 16 GeV) = (110 f 35)pb (44) 

o(Q > 20 GeV) = ( 50 f 20)pb (45) 

where the theoretical error, obtained by variation of parameters and 

sets of parton distributions, is also indicated. 

The normalised y distributions for different values of Q are shown 

in Fig. 16. Finally the norrnalised qr distributions arc plotted in 

Fig. 17 for the same values of Q. Fig. 17 was obtained using the 

formulae of ref.(l), incorporating the modification Eq.(37). 



CONCLUSIONS 

In this paper we have investigated the production of W’s, Z’s and 

virtual photons in hadron hadron collisions using the basic parton 

parton annihilation mechanism. Using formulae, presented in .ref.(l), 

which are the result of many years of theoretical work, we have made 

numerical predictions for present and future collider energies. In 

doing so we have also attempted to estimate the uncertainties due to our 

lack of precise knowledge of the input parameters. The predictions test 

many aspects of the standard SU(3)xSU(2)xU(l) model. We must now await 

the response of experiment. 
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TABLE CAPTIONS 

1. Theoretical results for the W and Z total cross-sections in pP 
interact ions at various energies. Estimates of the theoretical 
error are also given. 

2. The percentage probability n(qoT) as a funtcion of qoT, for W and Z 
bosons at & - 540. 630 GeV. 

3. The percentage probability xw(qo ) including the order 
correction at Js - 540 GeV. withTA,-+5 -0.1 - 0.3 GeV. 

4. The percentBge probability xw(qoT) at Js-1.6 and 10 TeV as a 
function of q TY 

5. The W production cross section x(y,qT) - l/o da/dqTdy * 1 O3 GeV-’ 
in pp collisions at & * 0.63 TeV. 
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Table 1 

&(TeV) (I'++' (v83 GeV) (nb) ozoCMzo=94 GeV) (nb) 

0.54 
4 2+1i3 +0.4 

* -0.6 l-3-0.2 

0.63 
+1.6 

5-3-o. 9 
+0.5 

'-6-0.3 

+4.0 +1.2 
1.6 '6yo-2;5 "'-0.8 

2. 20. 
+6. 

6.2 
+1.9 

-4; -1.2 

10. 75. 
+35. 

27. 
+12. 

-25. - 9. 

20. 130. r;",* 46. +24. 
-20. 

40. 190.*100. 70. +30. 

Table 3 

25 3.4 *0.4 

30 2.0 io.2 

40 0.8 50.1 

50 0.4 20.05 

60 0.16iO.02 



38 

Table 2 

qoT nW( cl;)% l?(q)% 

25 4.4 f2.0 5.1 i2.5 

30 2.7 il.1 3.2 il.3 

35 1.7 io.7 2.0 io.8 

40 1.1 io.4 1.4 f0.5 

45 0.7 to.3 0.9 *0.3 

50 0.5 50.1 0.6 f0.2 

55 0.30*0.07 0.40io.10 

60 0.2OkO.05 0.25+0.08 

0 

qT 

25 5.Q *2.3 6.11 2.8 

30 3.5 il.3 4.0 k1.6 

35 2.3 +0.8 2.6 +l.O 

40 1.5 f0.5 1.8 kO.6 

45 1.0 a.3 1.2 kO.4 

50 0.7 f0.2 0.9 *to.2 

55 0.5oiO.15 0.6OiO.15 

60 0.30io.09 0.40io.12 

lTwc + A cl;)% 

Js = 540 GeV. 

Js = 630 Gev 
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Table 4 

qT nW(q;)$ at JS = 1.6 TeV nwh;H at JS = 10 TeV 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

150 

160 

170 

180 

8.9 

5.3 

3.3 

2.1 

1.4 

0.9 

0.6 

26.0 

16.9 

11.7 

8.3 

6.0 

4.5 

3.4 

2.6 

2.1 

1.7 

1.3 

1.1 

0.9 

0.7 

0.6 

0.5 
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Table 5 

qT CeV x(o.qT) x(o,5.qT) x(o.75,qT) x(l.o,qT) x(1.25,qT) x(1.50,qT) dl.75,q.+ 

1 

: 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

43.8 
61.8 
59.9 
51.4 
42.5 
34;6 
28.1 
23.2 
19.6 
16.7 
14.1 
11.9 
10.5 

9;4 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

The parton distribution functions f-used in this- paper as a 
function of x at Q - 83 GeV. g, u and u P u-u refer to the 
gluon, the anti-quark and the valence up qxark distributions. 
The solid lines are the distributions of ref. 18 (Dot, 
A - 0.2 GeV), the dashed lines are the distributions of 
ref. 19 (GHR. A - 0.4 Gem, and the dotted lines are the 
distributions of ref. ‘20 (EIiLQl, A = 0.2 GeV). 

The combinations of products of parton distributions relevant 

ref. 18, Dashed line: GHR, A = 0.4 CeV, ref. 19. Dotted line: 
EHLQl, A - 0.2 Gall, ref. 20. , 

The ratio R = (do/dqTdy)/(do/dy) at y = 0 as a function of q . 
The curves are plotted for 4.S - 0.63, 1.6, 10 and 20 TeT. 
Parton distributions: Dol. A - 0.2. 

The dimensionless quantity E = q (do/dq dy)/(do/dy) at y = 0 
as a function of x = 2q /&, aor diffzrent values of /.S but 
with V’T fixed at theTvalueT fT = 0.13. Parton distributions: 
DOl, A = 0.2, ref. 18. 

Total cross-sections for the production of W++W- (MW = 83) and 
hypothetical W’s of heavier mass vs. centre of mass energy. 
The solid line is for proton-antiproton collisions and the 
dashed line for proton-proton collisions. (Distributions DOl, 
A- 0.2 GeV). 

sow++w- plotted against l/ft for various values of the centre 
of mass energy ranging between 0.54 and 20 TeV. The parton 
distributions of ref. 19 were used (GHR, A = 0.4 GeV). 

Fig. 7 The distribution [(do/dy)/o] vs. rapidity y at various values 
of fS for Mw = 83. The black squares near to the curve at 
fS = 0.63 TeV represent the results obtained at fS - 10 TeV 
for a vector boson mass which gives the same value of T as the 
solid curve. (i.e. M = 1320 GeV). Parton distributions: DOl, 
A- 0.2 GeV; ref. t8. 

Fig. 8. Comparison of the resummed expression for (do/dq dy) 1 y=O 
(solid line) with the first order perturbative ex ression F 
(dashed line) at fS = 0.63 TeV using the parton distributions 
of ref. 19 (GHR, A = 0.4 GeV). 
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Fig. 9. Same as Fig. 8 with fS = 10 TeV. 

Fig. 10. The average value of q 
for three values of 'I T 

in pp collisions as a function of fS 
the couplings are fixed as for ordinary 

W production but the mass Q is changed). The solid line 
indicates the average transverse momentum for the production 
of the W. Distributions: DOl, A = 0.2, ref. 18. 

Fig. 11. The same as in Fig. 10 but for the root mean square of the 
transverse momentum. 

Fig. 12. The same as in Fig. 10 but for proton-proton rather than for 
proton-antiproton collisions. 

Fig. 13. The ratio R = (do/dq dy)/(do/dy) at fS = 630 GeV and different 
values of the rap dity y. T Distributions: DOl, A = 0.2 GeV. 
ref. 18. 

Fig. 14. Normalised rapidity distribution for W production at 
fs = 630 GeV. Distributions: DOl, A = 0.2 GeV, ref. 18. 

Fig. 15. The lepton pair production cross-section at fS = 5'10 GeV as a 
function of the pair mass Q. Only the virtual photon 
contribution is included in this'plot. Parton distributions: 
DOl, A = 0.2 GeV, ref. 18. 

Fig. 16. Normalised rapidity distribution F(y) = (do/dQ2dy)/(do/dQ2) 
for lepton pair production at fS = 5'10 GeV for different 
values of the lepton pair mass, computed as described in 
Fig. 15. 

Fig. 17. Normalised q distribution R = (dc/dq dy)/(do/dy) at y=O for 
lepton pair &oduction at fS = 5'10 Ge$ for different values of 
the lepton pair mass, computed as in Fig. 15. 
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